
Probabilistic assignments

Haihan Yu

Multi-agent Lab, Kyushu University

August 31, 2019

Introduction

Assignment (or matching) algorithms are rarely deterministic
(re-running the algorithm with the same preferences the outcome
does not change).
There are often some randomness. For instance:

Objects’ priorities can be coarse: two or more individuals are
equally ranked.
We need to introduce randomness to break ties (e.g., if the
law prohibits to sort according to the name or other factors)
The random order in the serial dictatorship.
Randomness is not needed: the algorithm does nor require
the order of dictators to be random.

2 / 28

Randomness can also be used to introduce some fairness.
2 objects to be assigned between two people.

PAlice PBob
A A
B B

A deterministic assignment will favor one of the individuals at
the expense of the other.
For instance: Alice always gets A, her top choice.
A random assignment can make the allocation fair: each
individual has a probability of 50% to get her top choice.

3 / 28

Random assignments

We study here random assignment problems, which consist of:
A finite set of individuals I = {i1, i2, . . . , in}; and
A finite set of objects I = {k1, k2, . . . , kn}.

For simplicity, we assume:
each individual has a strict preference ordering over all objects
(i.e., all objects are acceptable);
There are as many objects as there are individuals.

4 / 28

Definition

A random assignment is a collection of n× n probabilities β,
such that
(a) For each agent–object pair (i, k) there is a probability βi,k that

indicates the probability that individual i is assigned object k;
(b) For each individual i,

∑
k∈K = βi,k1 + βi,k2 + · · ·+ βi,kn = 1 .

each individual has a probability 1 to get an object.
(c) For each object k,

∑
i∈I = βi1,k + βi2,k + · · ·+ βin,k = 1.

each object has a probability 1 to be assigned to some
individual.

We could dispense with (b) and (c). But it’s easier to do like this.

5 / 28

Example

A random assignment can be represented by a matrix:

apple orange pear
↓ ↓ ↓()Alice → 0.3 0.7 0

Bob → 0.5 0.3 0.2
Carol → 0.2 0 0.8

Alice obtains:
an apple with a probability of 0.3: βAlice,apple = 0.3.
an orange with a probability of 0.7: βAlice,orange = 0.7.
a pear with a probability of 0: βAlice,pear = 0.

6 / 28

A deterministic assignment is also a probabilistic assignment.
The assignment

µ(Alice) = orange µ(Bob) = apple µ(Carol) = pear

has this following matrix representation:

apple orange pear
↓ ↓ ↓()Alice → 0 1 0

Bob → 1 0 0
Carol → 0 0 1

7 / 28

The Birkhoff–von Neumann theorem

A random assignment assigns to each individual-object pair a
probability.
How do we ensure that no two individuals eventually end up with
the same object?
The way we described the probabilities implicitly assumed that they
are independent. So both Alice and Bob could get at the same
time the apple.
There a in fact two ways to describe a random assignment, and
they are (somehow) equivalent.

8 / 28

Two possible approaches:
A random assignment assigns to each individual-objet pair a
probability (our definition).
A random assignment assigns probabilities to deterministic
assignments.
Example: We have with probability 0.4 the assignment

µ(Alice) = orange µ(Bob) = apple µ(Carol) = pear

and with probablity 0.6 the assignment

µ′(Alice) = pear µ′(Bob) = orange µ′(Carol) = apple

9 / 28

Theorem (Birkhoff–von Neumann)

Any random assignment can be decomposed into a lottery over
deterministic assignments.

Remark
The decomposition is not necessarily unique.

10 / 28

Example

The following deterministic assignments can decompose the
probabilistic assignment of the previous example:

µ =

1 0 0
0 1 0
0 0 1

 µ′ =

0 1 0
1 0 0
0 0 1

 µ′′ =

0 1 0
0 0 1
1 0 0


with the probabilities

Prob(µ) = 0.3 Prob(µ′) = 0.5 Prob(µ′′) = 0.2

Alice gets the orange with µ′ and µ′′. This occurs with probability

0.5 + 0.2 = 0.7

which is precisely βAlice,orange.

11 / 28

Evaluating random assignments

When Alice compares two deterministic assignments she only needs
to look at the object she gets: she prefers µ to µ′ if she prefers her
object with µ to the one with µ′.
With probabilistic assignment we cannot do that.
Worse, we cannot calculate expected payoffs: the only
information we have is an ordering.

12 / 28

Stochastic dominance

To compare vector of probabilites (one probability for each object)
we proceed the following way:

Compare the probabilities to have the most preferred object.
Compare the probabilities to have the two most preferred
objects.
Compare the probabilities to have the three most preferred
objects.
etc.

If the comparison always go in the same direction then we can say
that one probabilistic assignment dominates the other.

13 / 28

Definition
For an individual i, a probabilistic assignnment β stochastically
dominates a probabilistic assignnment β′ if, for each
h = 1, . . . , n− 1, ∑

`≤h
βi,k` ≥

∑
`≤h

β′i,k` .

Remark
We don’t need to calculate up to h = n: Part (b) of the definition
of a probabilistic assignment states that

n∑
h=1

βi,h = 1 =

n∑
h=1

β′i,h

Remark
β not dominating β′ ��⇒ β′ dominates β′.

14 / 28

Example

Suppose Alice’s preferences are: apple, orange, pear, cherry.

β β′ β′′

apple 0.2 0.3 0.3
orange 0.3 0.3 0.6
pear 0.1 0.2 0.1
cherry 0.4 0.2 0

Probabilities to get something at least as good as:

β β′ β′′

the applethe apple 0.20.2 0.30.3 0.30.3
the orangethe orange 0.5 0.6 0.9

the pear 0.6 0.8 1

So β′′ dominates β′, which and they both dominate β.

15 / 28

Random serial dictatorship

Obvious critique for serial dictatorship: individuals high in the
queue are favored.
Random serial dictatorship brings fairness: everyone has the
same chances to be first, last, or at any other position.
Nothing much to mention (for now), except that is has an
interesting connection with TTC.
The TTC with mixed endowments had a trick: assign randomly the
public endowments to new applicants.
We can generalize this idea and obtain a TTC with random
endowments.

16 / 28

Example

PAlice PBob PCarol
k1 k1 k3
k2 k2 k2
k3 k3 k1

Order for serial dictatorship: Alice, Bob, Carol. Assignment is:

µ(Alice) = k1 µ(Bob) = k2 µ(Carol) = k3

For TTC, endow with the following objects:

Alice→ k1 Bob→ k3 Carol→ k2

First cycle: Alice points to herself.First cycle: Alice points to
herself. Second cycle: Bob → Carol → Bob Assignment: µ again!

17 / 28

Theorem (Abdulkadiroğlu and Sönmez)

For any assignment problem with the same number of individuals
and objects:
The random assignments generated by the Random Serial
Dictatorship algorithm are the same (with the same probabilities)
as the random assignments generated by the Top Trading Cycle
algorithm with random endowments.

18 / 28

Ex-ante v. ex-post

When introducing randomness in an assignment there are two ways
to study the assignments:

Ex-ante:
We look at the assignments that can be obtained before the
random draw is realized.
We use stochastic dominance to compare assignments.
Ex-post:
We look at the assignments that are obtained after the
random draw is realized.
To compare assignments we compare the objects the
individuals receive.

19 / 28

Definition
A random assignment β is ex-ante efficient (or ordinally efficient
if there is no other random assignment β′ such that, for each
individual, β′ stochastically dominate β.

The problem is that ex-ante efficiency is not equivalent to
ex-ante efficiency.
Serial dictatorship is ex-post efficient. But it is not ex-ante
efficient. . .

20 / 28

Example

PAlice PBob PCarol PDenis
apple apple orange orange
orange orange apple apple
pear pear strawberry strawberry

strawberry strawberry pear pear

For serial dictatorship there are 24! different orders.

Alice is 1st: 6/24 times
She gets the apple for sure ⇒ gets the apple 6/24 times.

Alice is 2nd: 6/24 times
She gets the apple only if Bob is not ranked second.
When Alice is 2nd, Bob is first 2 times (out of 6), 4 times it’s Carol
or Denis.
⇒ Alice gets the apple 4/24

Alice is 3rd: 6/24 times.
If Bob first, she does not get the apple.
She needs Carol and Denis to be in the first 2 positions. But then
they take the apple.
She’ll never get the apple.

Alice is 4th: 6/24 times.
Alice will never get the apple

Overall, Alice gets the apple with probability

6

24︸︷︷︸
Alice 1st

+
4

24︸︷︷︸
Alice 2nd

+
0

24︸︷︷︸
Alice 3rd

+
0

24︸︷︷︸
Alice 4th

=
5

12

Doing it for all objects and individuals we get

apple orange pear strawberry
↓ ↓ ↓ ↓


Alice → 5/12 1/12 5/12 1/12
Bob → 5/12 1/12 5/12 1/12
Carol → 1/12 5/12 1/12 5/12
Denis → 1/12 5/12 1/12 5/12

21 / 28

But

apple orange pear strawberry
↓ ↓ ↓ ↓


Alice → 5/12 1/12 5/12 1/12
Bob → 5/12 1/12 5/12 1/12
Carol → 1/12 5/12 1/12 5/12
Denis → 1/12 5/12 1/12 5/12

is stochastically dominated by

apple orange pear strawberry
↓ ↓ ↓ ↓


Alice → 1/2 0 1/2 0
Bob → 1/2 0 1/2 0
Carol → 0 1/2 0 1/12
Denis → 0 1/2 0 1/12

22 / 28

One way to obtain ex-ante efficient assignment is to use an eating
algorithm.
Such algorithms imagine that individuals “eat” the objects, and the
share of each object they ate give the probabilities.
Probabilistic Serial algorithm:

When the algorithm starts each individual starts eating her
most preferred object.
When the object an individual is eating is entirely eaten then

The fraction of the object that has been eaten will be the
probability that the individual is assigned that object.
The individual starts eating the most preferred object among
the objects that are not entirely eaten yet.

23 / 28

Example I

apple orange pear strawberry
↓ ↓ ↓ ↓


Alice → 1/2 0 1/2 0
Bob → 1/2 0 1/2 0
Carol → 0 1/2 0 1/12
Denis → 0 1/2 0 1/12

Alice and Bob start eating the apple
⇒ they both eat one half, so they both get a probability of 1

2
to have it.
Same for Carol and Denis: 1

2 probability to have the orange.
Next Alice and Bob eat the pear (orange already eaten by
Carol and Denis).
⇒ they both eat one half, so they both get a probability of 1

2
to have it. Same witht the strawberry for Carol and Denis.

24 / 28

Example II

PAlice PBob PCarol
apple apple orange
pear orange pear
orange pear apple

Alice and Bob eat the apple, get 1
2 of it.

When done, Carol ate 1
2 of the orange.

Next Bob joins Carol on the orange.
Both Bob and Carol eat 1

2 of what’s left of it.
Bob ate 1

4 and Carol 3
4 of the orange.

In the meantime, Alice ate 1
4 of the pear.

Then they all eat what’s left of the pear (34).
So they all eat 1

4 of it.
So we obtain

apple orange pear
↓ ↓ ↓()Alice → 1/2 0 1/2

Bob → 1/2 1/4 1/4
Carol → 0 3/4 1/4

25 / 28

Theorem (Bogomolnaia and Moulin)

For any problem and for any eating speed functions the random
assignment calculated with the probabilistic serial algorithm is
ex-ante efficient.
Conversely, for any ex-ante efficient random assignment there exists
an eating speed function for each individual such that the
probabilistic serial algorithm yields this random assignment.

Randomness introduced to introduce some fairness. The formal
notion generally used is equal treatment of equals: two
individuals with the same preferences should obtain the same
probabilities.

Theorem (Bogomolnaia and Moulin)

Whenever there at least four individuals, there is no random
assignment mechanism that is always ex-ante efficient,
strategyproof and that satisfies the equal treatment of equals
property.

26 / 28

Take-away

Some “randomness” (or constructed probabilities) are often
used in assignment mechanisms. They permit to address
fairness issues.
Probabilistic assignments are best evaluated using stochastic
dominance (but we may want to use other methods).
Random Serial Dictatorship is a common and simple
probabilistic assignment mechanism. It is equivalent to Top
Tradind Cycle with random endowments.
With probabilistic assignments there are two way to gauge an
assignments: ex-ante and ex-post
Ex-ante efficiency and ex-post efficiency are not equivalent.

27 / 28

Random Serial Dictatorship is ex-post efficient but it is not
ex-ante efficient.
Any ex-ante efficiency can be obtained using an eating
algorithm like probabilistic serial (using appropriate eating
function speeds).
With 4 or more individuals, ex-ante efficiency,
strategyproofness and equal treatment of equals are
incompatible.

28 / 28

